
INTEGRATED CIRCUITS

Product data Supersedes data of 2001 Jan 12 2003 Jun 27

PCA8550

FEATURES

- 4-bit 2-to-1 multiplexer, 1-bit latch DIP switch
- 5-bit internal non-volatile register
- Override input forces all outputs to logic 0
- Internal non-volatile register write/readable via I²C-bus
- Write-protect pin enables/disables I²C writes to register
- 2.5 V multiplexed outputs
- 3.3 V non-multiplexed output (latched)
- 5 V tolerant inputs
- Useful for 'jumperless' configuration of PC motherboards
- Designed for use in Pentium Pro/Pentium II[™] systems

DESCRIPTION

The primary function of the 4-bit 2-to-1 I^2C multiplexer is to select either a 4-bit input or data from a non-volatile register and drive this value onto the output pins. One additional non-multiplexed register output is also provided. The non-multiplexed output is latched to prevent output value changes during I^2C writes to the non-volatile register. A write protect input is provided to enable/disable the ability to write to the non-volatile register. An "override" input feature forces all outputs to logic 0.

PIN CONFIGURATION

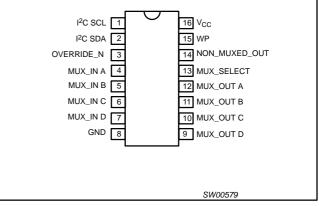


Figure 1. Pin configuration

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	TOPSIDE MARK	DRAWING NUMBER
16-Pin Plastic SO	0 to +70 °C	PCA8550D	PCA8550	SOT109-1
16-Pin Plastic SSOP	0 to +70 °C	PCA8550DB	PA8550	SOT338-1
16-Pin Plastic TSSOP	0 to +70 °C	PCA8550PW	PCA8550	SOT403-1

Standard packing quantities and other packaging data is available at www.philipslogic.com/packaging.

FUNCTIONAL DESCRIPTION

When the MUX_SELECT signal is logic 0, the multiplexer will select the data from the non-volatile register to drive on the MUX_OUT pins. When the MUX_SELECT signal is logic 1, the multiplexer will select the MUX_IN lines to drive on the MUX_OUT pins. The MUX_SELECT signal is also used to latch the NON_MUXED_OUT signal which outputs data from the non-volatile register. The NON_MUXED_OUT signal latch is transparent when MUX_SELECT is in a logic 0 state, and will latch data when MUX_SELECT is in a logic 1 state. When the active-LOW OVERRIDE_N signal is set to logic 0 and the MUX_SELECT signal is at a logic 0, all outputs will be driven to logic 0. This information is summarized in Table 1. The write protect (WP) input is used to control the ability to write the contents of the 5-bit non-volatile register. If the WP signal is logic 0, the l^2C -bus will be able to write the contents of the non-volatile register. If the WP signal is logic 1, data will not be allowed to be written into the non-volatile register.

The factory default for the contents of the non-volatile register are all logic 0. These stored values can be read or written using the $I^{2}C$ bus (described in the next section).

The OVERRIDE_N, WP, MUX_IN, and MUX_SELECT signals have internal pull-up resistors. See the DC and AC Characteristics for hysteresis and signal spike suppression figures.

Pentium II is a registered trademark of Intel Corporation.

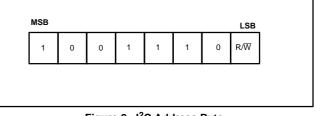
PCA8550

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	I ² C SCL	I ² C-bus clock
2	I ² C SDA	Bi-directional I ² C-bus data
3	OVERRIDE_N	Forces all outputs to logic 0
4	MUX_IN A	
5	MUX_IN B	
6	MUX_IN C	External inputs to multiplexer
7	MUX_IN D	
8	GND	Common ground voltage rail
9	MUX_OUT D	
10	MUX_OUT C	Q.E.V. multiplayed autout
11	MUX_OUT B	2.5 V multiplexed output
12	MUX_OUT A	
13	MUX_SELECT	Selects MUX_IN inputs or register contents for MUX_OUT outputs
14	NON_MUXED_OUT	TTL-level output from non-volatile memory
15	WP	Non-volatile register write-protect
16	V _{CC}	Positive voltage rail

FUNCTION TABLE

Table 1. Function table


OVERRIDE _N	MUX_SELECT	MUX_OUT OUTPUTS	NON_MUXED_OUT OUTPUT
0	0	All 0's	All 0's
0	1	MUX_IN inputs	Latched NON_MUXED_OUT ¹
1	0	From non- volatile register	From non-volatile register
1	1	MUX_IN inputs	From non-volatile register

NOTE

 Latched NON_MIXED_OUT state will be the value present on the NON_MUXED_OUT output at the time of the MUX_SELECT input transitioned from a logic 0 to a logic 1 state.

I²C INTERFACE

Communicating with this device is initiated by sending a valid address on the I^2 C-bus. The address format (see FIgure 2) is a fixed unique 7-bit value followed by a 1-bit read/write value which determines the direction of the data transfer.

Figure 2. I²C Address Byte

Following the address and acknowledge bit are 8 data bits which, depending on the read/write bit in the address, will read data from or write data to the non-volatile register. Data will be written to the register if the read/write bit is logic 0 and the WP input is logic 0. Data will be read from the register if the bit is logic 1. The three high-order bits (see FIgure 3) are logic 0. The next bit is data which is non-multiplexed. The low four bits are the data which will be multiplexed. A write with any of the first three bits non-zero will be aborted.

NOTE:

1. To ensure data integrity, the non-volatile register must be internally write protected when V_{CC} to the l²C-bus is powered down or V_{CC} to the component is dropped below normal operating levels.

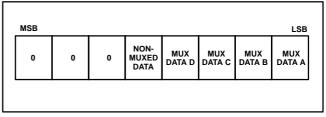


Figure 3. I²C Data Byte

POWER-ON RESET (POR)

When power is applied to V_{CC}, an internal power-on reset holds the PCA8550 in a reset state until V_{CC} has reached V_{POR}. At that point, the reset condition is released and the PCA8550 volatile registers and I²C state machine will initialize to their default states.

The MUX_OUT and NON_MUXED_OUT pin values depend on:

- the OVERRIDE_N and MUX_SELECT logic levels
- the previously stored values in the EEPROM register/current MUX_IN pin values as shown in Table 1.

BLOCK DIAGRAM

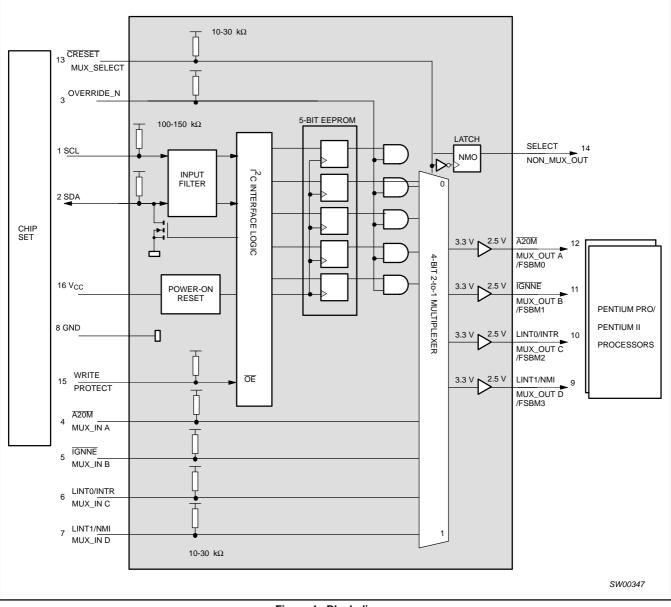


Figure 4. Block diagram

PCA8550

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
VI	DC input voltage	Note 3	-1.5 to V _{CC} +1.5	V
V _{OUT}	DC output voltage	Note 3	-0.5 to V _{CC} +0.5	V
T _{stg}	Storage temperature range		-60 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C. 3.

The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

CYMDOL	SYMBOL PARAMETER		CONDITIONS	LIMITS		
STMBOL			CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage			3.0	3.6	V
V _{POR}	Power-on reset voltage		No load; $V_I = V_{DD}$ or GND	—	2.6	V
V _{IL}	LOW-level input voltage	SCL, SDA	I _{OL} = 3 mA	-0.5	0.9	V
V _{IH}	HIGH-level input voltage	SCL, SDA	I _{OL} = 3 mA	2.7	4.0	V
V _{OL}	LOW-level output voltage	SCL, SDA	I _{OL} = 3 mA	_	0.4	V
V _{IL}	LOW-level input voltage	OVERRIDE_N, MUX_IN, MUX_SELECT		-0.5	0.8	v
V _{IH}	HIGH-level input voltage	OVERRIDE_N, MUX_IN, MUX_SELECT		2.0	4.0	v
I _{OL}	LOW-level output current	MUX_OUT NON_MUXED_OUT		_	2.0	mA
I _{ОН}	HIGH-level output current	MUX_OUT NON_MUXED_OUT		_	-2.0	mA
dt/dv	Input transition rise or fall time			0	10	ns/V
T _{amb}	Operating ambient tempera	ture		0	70	°C

RECOMMENDED OPERATING CONDITIONS

DC CHARACTERISTICS

Temp = 0 to +70 $^\circ C$ 3.0 V < V_{CC} \leq 3.6 V

CYMPOL	PARAMETER	CONDITIONS	LIMITS			
SYMBOL	PARAMETER	CONDITIONS	MIN MAX			
SCL, SDA		· · ·		•		
V _{OL}	LOW-level output voltage		0	0.6	V	
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		3.0	mA	
I _{OL}	LOW-level output current	V _{OL} = 0.6 V		6.0	mA	
I_{IL}^{1}	LOW-level input current	V _{IL} = 0.4 V	-7	-32	μA	
Ι _{ΙΗ}	HIGH-level input current	V _{IH} = 2.4 V	-1.5	-12	μA	
V _{hys}	Hysteresis voltage		0.19		V	
OVERRIDE_N,	WP, MUX_SELECT					
۱ _{IL}	LOW-level input current		-86	-267	μA	
I _{IH}	HIGH-level input current		-20	-100	μA	
$MUX_IN A \Rightarrow D$		· · ·		•		
۱ _{IL}	LOW-level input current	V _{IL} = 0.4 V	-0.72	-2.0	mA	
I _{IH}	HIGH-level input current	V _{IH} = 2.4 V	-0.72	-2.0	mA	
MUX_OUT	<u> </u>	· · ·				
λ.	LOW-level output voltage	I _{OL} = 100 μA	-0.3	0.4	- v	
V _{OL}		I _{OL} = 2.0 mA	-0.3	0.7		
		I _{OH} = -100 μA	2.0	2.625		
V _{OH}	HIGH-level output voltage	I _{OH} = -1.0 mA	1.7	2.625	V	
NON_MUXED_	OUT	· · ·		•		
		I _{OL} = 100 μA	-0.5	0.4		
V _{OL}	LOW-level output voltage	I _{OL} = 2.0 mA	-0.5	0.7	- V	
		I _{OH} = -100 μA	2.4	3.6	- v	
V _{OH}	HIGH-level output voltage	I _{OH} = -2.0 mA	2.0	3.6		
I _{CC}	Quiescent supply current	$V_{CC} = 3.3 \text{ V}; \text{ V}_{I} = 0 \text{ V to } V_{CC}$		10	mA	
I _{CC}	Quiescent supply current	V _I = V _{CC}		500	μA	
CI	Input capacitance			10	pF	
	ESD protection		2.0		K٧	
	Input diode clamp voltage		-1.5		V	

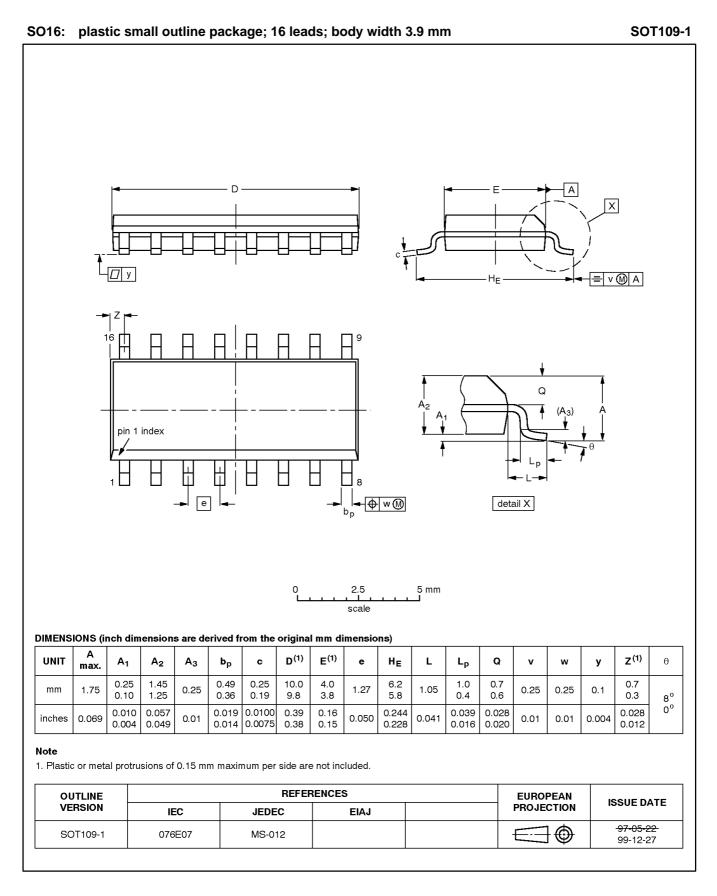
NOTES:

1. V_{HYS} is the hysteresis of Schmitt-Trigger inputs

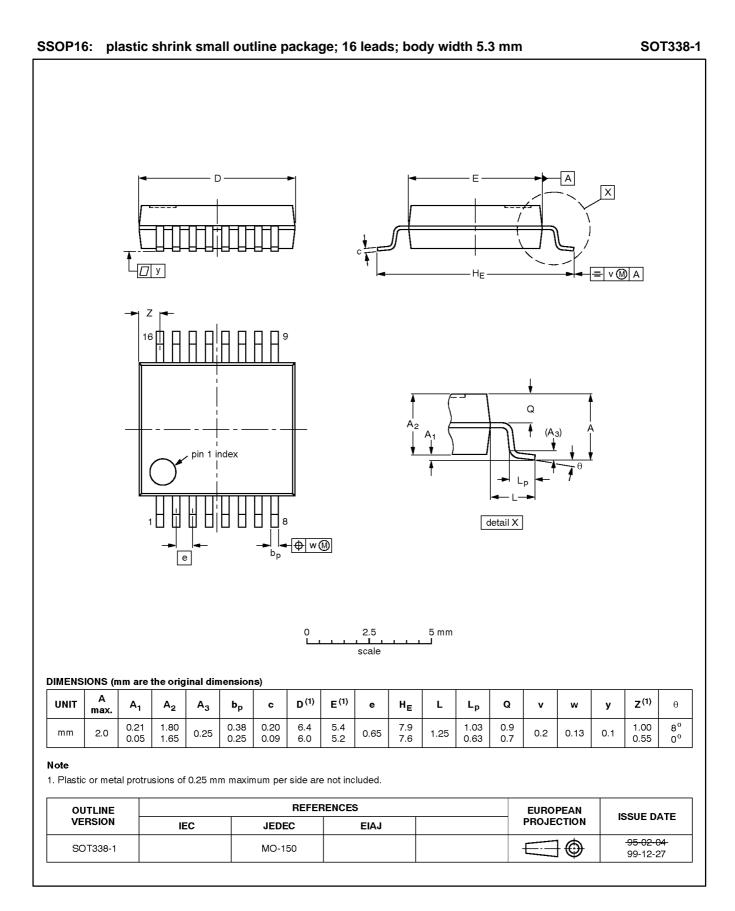
2. Human body model

NON-VOLATILE STORAGE SPECIFICATIONS

Parameter	Specification
Memory cell data retention	10 years min
Number of memory cell write cycles	100,000 cycles min


Application Note AN250 I²C DIP Switch provides additional information on memory cell data retention and the minimum number of write cycles.

AC CHARACTERISTICS


		LIN	LIMITS	
SYMBOL	PARAMETER	MIN	MAX	UNIT
t _{MPD}	Mux input to output propagation delay		20.0	ns
t _{SOV}	MUX_SELECT to output valid		22	ns
t _{OVN}	OVERRIDE_N to NON_MUX output delay		15.0	ns
t _{OVM}	OVERRIDE_N to mux output delay		25.0	ns
t _R	Output rise time	1.0	3.0	ns/V
t _F	Output fall time	1.0	3.0	ns/V
CL	Test load capacitance on Muxed/Non-Muxed outputs		15	pF
-bus				
f _{SCL}	I ² C clock frequency	10	400	KHz
t _{SCH}	I ² C clock HIGH time	600		ns
t _{SCL}	I ² C clock LOW time	1.3		ns
t _{DSP}	I ² C data spike time	0	50	ns
t _{SDS}	I ² C data set-up time	100		ns
t _{SDH}	I ² C data hold time	0		ns
t _{ICR}	I ² C input rise time (10-400 pF bus)	20	300	ns
t _{ICF}	I ² C input fall time (10-400 pF bus)	20	300	ns
t _{BUF}	I ² C-bus free time between start and stop	1.3		ns
t _{STS}	I ² C repeated start condition set-up	600		ns
t _{STH}	I ² C repeated start condition hold	600		ns
t _{SPS}	I ² C stop condition set-up	600		ns
CB	I ² C-bus capacitive load		400	pF
T _W	Write cycle time ¹	TYPIC	AL = 15	ms

NOTE:

1. WRITE CYCLE time can only be measured indirectly during write cycle. The device will not acknowledge its I^2C address.

Product data

REVISION HISTORY

Rev	Date	Description	
_6	20030627	Product data (9397 750 11678); ECN 853-2015 29936 dated 19 May 2003. Supersedes data of 2001 Jan 12 (9397 750 07926).	
		Modifications:	
		 Update marketing information. 	
		 Increase number of write cycles from 3K to 100K. 	
_5	20010112	Product data (9397 750 07926); ECN 853-2015 25405 of 12 Jan 2001.	

PCA8550

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips. This specification can be ordered using the code 9398 393 40011.

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 © Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 06-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

Document order number:

HILIPS

9397 750 11678

Let's make things better.

